استفاده از شبکه عصبی مصنوعی در تعیین دبی سریز سد مارون
نویسندگان
چکیده مقاله:
برای اندازهگیری دقیقتر جریان آب، همواره سعی شده است تا حد امکان سازههای با نقص کمتر و دقت بالاتر طراحی شود. سرریز و دریچه ازجمله سازههایی هستند که همواره برای اندازهگیری میزان جریان آب، بهصورت گسترده مورد استفاده قرار میگیرند امروزهصبی مصنوعی بر مبنای استفاده از دانش نهفته بین متغیرهای ورودی و خروجی یک مسئله، بدون دسطح آزاد آب و درصد آبگذری و پارامتر خروجی دبی سریز سد مخزنی میباشد. مدلهای مورد استفاده در شبکههای عصبی مصنوعی شامل شبکههای پیشخور (FF)، شبکه المان جردن (JEN)، با مقایسهی نتایج حاصل از مدلهای شبکههای عصبی مصنوعی تکاملی با مقادیر آزمون اندازهگیری شده مشخص گردید که مدل MLP نسبت به سایر مدلها از دقت و توانایی بیشتری در تعیین دبی سد مخزنی مارون، برخوردار است. همچنین ضریب رگرسیونی(R2) این مدل در سه مرحله آموزش، اعتباریابی و آزمون برابر 942/0، 9479/0 و 9468/0 و شیب خط راست برابر 9413/0، 9287/0 و 9564/0 میباشد که بیانگر انعطافپذیری و دقت بالای مدل است.
منابع مشابه
تعیین ارزش داراییهای نامشهود با استفاده از شبکه عصبی مصنوعی
درک عوامل موثر بر ارزش شرکت برای سرمایهگذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایهگذاری یا اعطای تسهیلات، امری حیاتی است. از آنجایی که اقتصاد دانشمحور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر داراییهای فیزیکی به دانش نامشهود منتقل شده است. از اینرو در آینده نه چندان دور، ارزشگذاری داراییهای نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...
متن کاملبهینهسازی ساختار شبکه عصبی مصنوعی در پیشبینی دبی رسوب با استفاده از روش تاگوچی
در دهه های اخیر شبکه های عصبی مصنوعی به عنوان ابزاری موفق در تخمین و پیش بینی پدیده های هیدرولوژیکی به کار گرفته شده اند. اگرچه استفاده از شبکه های عصبی مصنوعی امکان برآورد بار معلق رسوب رودخانه ها را با دقت و سرعت مناسب فراهم کرده است، اما دقت پیش بینی این مدل ها، به میزان زیادی تحت تاثیر دانش و درک کاربر از شبکه عصبی مصنوعی قرار دارد. در مطالعات منابع طبیعی و به ویژه مطالعات هیدرولو...
متن کاملمدلسازی منطقهای دبیهای اوج در زیر حوزههای آبخیز سد سفیدرود با استفاده از شبکه عصبی مصنوعی
The model in this research was created based on the Artificial Neural Network (ANN) and calibrated in the Sefid-rood dam basin (excluding Khazar zone). This research was done by gathering and selecting peak flows of hydrographs from 12 sub basins, the concentration time of which was equal to or less than 24 hours and was caused only by rainfall. From all the selected sub basins, totally 661 hyd...
متن کاملمدلسازی منطقه ای دبی های اوج در زیر حوزه های آبخیز سد سفیدرود با استفاده از شبکه عصبی مصنوعی
مدل مورد بحث در این تحقیق با استفاده از شبکه عصبی مصنوعی ساخته شده و در حوزه آبخیز سفید رود (ناحیه غیر خزری) واسنجی شده است. انجام این تحقیق مبتنی بر جمع آوری و انتخاب آبنمودهایی فقط با منشأ بارندگی در 12 زیر حوزه با زمان تمرکز برابر و یا کمتر از 24 ساعت بوده است. از کل زیر حوزه های انتخابی به تعداد 661 آبنمود به منظور استفاده از دبی اوج آنها برای ساخت مدل پیش بینی، انتخاب گردیده است. متغیرهای ...
متن کاملمدلسازی منطقهای دبیهای اوج در زیر حوزههای آبخیز سد سفیدرود با استفاده از شبکه عصبی مصنوعی
The model in this research was created based on the Artificial Neural Network (ANN) and calibrated in the Sefid-rood dam basin (excluding Khazar zone). This research was done by gathering and selecting peak flows of hydrographs from 12 sub basins, the concentration time of which was equal to or less than 24 hours and was caused only by rainfall. From all the selected sub basins, totally 661 hyd...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 1- 15
تاریخ انتشار 2018-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023